

Likelihood Ratio Map for Direct Exoplanet Detection

Hazan Daglayan, Simon Vary, Faustine Cantalloube, P.-A. Absil, and Olivier Absil

Direct Imaging

Credit: https://exoplanets.nasa.gov/

Direct Imaging

• firefly \rightarrow exoplanet

▶ lighthouse \rightarrow star

Credit: https://exoplanets.nasa.gov/

Direct Imaging

Angular Differential Imaging

Problem setup & goal

Image sequence

Background (star+speckles)

Foreground (planet)

Background: (Annular) PCA^{1,2}

¹Amara and Quanz, 2012 ²Soummer, et al., 2012

Foreground

Foreground

Statistical Model for Foreground

Model based on point spread function (PSF)

Model based on point spread function (PSF)

Planet signature

Detection based on likelihood ratio map

Estimate the value of a_g by maximizing the log-likelihood

Log Likelihood under Gaussian Noise

$$\log \mathcal{L}_g^{\text{Gauss}}(a|R) \propto -\frac{1}{2} \sum_{(t,r)\in\Omega_g} \frac{|R(t,r) - aP_g(t,r)|^2}{\sigma_{R(r)}^2},$$
(1)

Detection based on likelihood ratio map

Estimate the value of a_g by maximizing the log-likelihood

Log Likelihood under Gaussian Noise

$$\log \mathcal{L}_g^{\text{Gauss}}(a|R) \propto -\frac{1}{2} \sum_{(t,r)\in\Omega_g} \frac{|R(t,r) - aP_g(t,r)|^2}{\sigma_{R(r)}^2},$$
(1)

We replace the Gaussian assumption in (1) with a Laplacian $^{\rm 3}$

Log Likelihood under Laplacian Noise $\log \mathcal{L}_g(a|R) \propto -\sum_{(t,r)\in\Omega_g} \frac{|R(t,r) - aP_g(t,r)|}{\sigma_R(r)},$

³Pairet, 2019

Detection based on likelihood ratio map

Estimate the value of a_g by maximizing the log-likelihood

Log Likelihood under Gaussian Noise

$$\log \mathcal{L}_g^{\text{Gauss}}(\boldsymbol{a}|\boldsymbol{R}) \propto -\frac{1}{2} \sum_{(t,r)\in\Omega_g} \frac{|\boldsymbol{R}(t,r) - \boldsymbol{a}P_g(t,r)|^2}{\sigma_{\boldsymbol{R}(r)}^2}, \tag{1}$$

We replace the Gaussian assumption in (1) with a Laplacian $^{\rm 3}$

Log Likelihood under Laplacian Noise

$$\log \mathcal{L}_g(a|R) \propto -\sum_{(t,r)\in\Omega_g} rac{|R(t,r)-aP_g(t,r)|}{\sigma_R(r)},$$

$$\hat{a}_{g} = \arg \max_{a} \log \mathcal{L}_{g}(a|R)$$
$$= \arg \min_{a} \sum_{(t,r)\in\Omega_{g}} \frac{|R(t,r) - aP_{g}(t,r)|}{\sigma_{R}(r)}.$$

³Pairet, 2019

$$\log \Lambda_g(R) = \log \left(rac{\mathcal{L}_g(\hat{a}_g|R)}{\mathcal{L}_g(0|R)}
ight)$$

 $= -\sum_{(t,r)\in\Omega_g} rac{|R(t,r) - \hat{a}_g P_g(t,r)| - |R(t,r)|}{\sigma_R(r)}.$

â

MLE of planet's brightness

$$\sigma_{g} = \arg\min_{a} \sum_{(t,r) \in \Omega_{g}} \frac{|R(t,r) - aP_{g}(t,r)|}{\sigma_{R}(r)}$$

$$\log \Lambda_g(R) = -\sum_{(t,r)\in\Omega_g} \frac{|R(t,r) - \hat{a}_g P_g(t,r)| - |R(t,r)|}{\sigma_R(r)}$$

 \hat{a}_g

MLE of planet's brightness

$$= \arg\min_{a} \sum_{(t,r)\in\Omega_g} \frac{|R(t,r) - aP_g(t,r)|}{\sigma_R(r)}$$

$$\log \Lambda_g(R) = -\sum_{(t,r)\in\Omega_g} \frac{|R(t,r) - \hat{a}_g P_g(t,r)| - |R(t,r)|}{\sigma_R(r)}$$

 \hat{a}_g

MLE of planet's brightness

$$= \arg\min_{a} \sum_{(t,r) \in \Omega_g} \frac{|R(t,r) - aP_g(t,r)|}{\sigma_R(r)}$$

$$\log \Lambda_g(R) = -\sum_{(t,r)\in\Omega_g} \frac{|R(t,r) - \hat{a}_g P_g(t,r)| - |R(t,r)|}{\sigma_R(r)}$$

â

MLE of planet's brightness

$$\sigma_{g} = \arg\min_{a} \sum_{(t,r) \in \Omega_{g}} \frac{|R(t,r) - aP_{g}(t,r)|}{\sigma_{R}(r)}$$

$$\log \Lambda_g(R) = -\sum_{(t,r)\in\Omega_g} \frac{|R(t,r) - \hat{a}_g P_g(t,r)| - |R(t,r)|}{\sigma_R(r)}$$

Likelihood ratio (LR) map

All fluxes a_g form flux frame.

Flux frame

Likelihood ratio (LR) map

All fluxes a_g form flux frame.

Flux frame

All log likelihood ratios $\log \Lambda_g(R)$ form likelihood map.

LR map

Detection Maps

Real planet:

Detection Maps

Synthetic planets:

Median SNRmap

ROC Curve Comparison

- Synthetic planets are injected.
- ► √TPR & √FPR are used instead of TPR & FPR.

Thank you for your attention! Any questions?