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Angular Differential Imaging (ADI)

When the light passes through
the atmosphere, atmospheric
turbulence deforms the signal
of the planetary systems. This
causes speckles which are very
similar to the planets.

It is not possible to detect
planets using only one image be-
cause of the speckles. As a re-
sult, multiple images of a star
are taken through a night of ob-
servation, so the planets follow
a circular trajectory.
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• Frames of the video sequence are stacked into T ×N2 matrix.
• Low-rank PCA model approximates the static background. [1, 4]
• The residual matrix contains dynamic foreground, i.e. the planet.
• Derotation of the residual enhances even more the planet signal.
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Matrix Completion for Exoplanet Detection (MC)
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Shortcoming of PCA: The low-rank approximation can be
affected by the moving planet resulting into poorer detection.

Proposed solution: Remove from the matrix pixels moving in
time that correspond to the planet’s trajectory and then approxi-
mate with a low-rank model. Since the trajectory of the planet
is unknown, we try many different trajectories.

Algorithm 1 MC for Exoplanet Detection

1: for each pixel in the annulus do
2: Remove a trajectory centered a pixel (xi, yi).
3: Apply low-rank approximation with the tra-

jectory missing.
4: Derotate the residual cube.
5: Assign the values of the derotated residual

cube at pixels (xi, yi) to the final residual
cube.

6: end for

Algorithm 2 Low-rank Matrix Fitting (LMaFit)[5]
Input: PΩ(Z

0), X0 ∈ Rm×r, Y0 ∈ Rr×n

1: repeat
2: Xi+1 = ZiY

†
i = argminX ∥XYi − Zi∥2F

3: Yi+1 = X†
i+1Zi = argminY ∥Xi+1Y −Zi∥2F

4: Zi+1 = Xi+1Yi+1 + PΩ(Z
0 −Xi+1Yi+1)

5: until termination criteria is reached

Likelihood Map
Assuming there is a planet along a trajectory g, the resid-
ual cube Rg = C − Ĉg is modeled as:

Rg = agPg +N, (1)

where ag > 0 is the flux, Pg is the planet signature along
g, and N is the residual noise. We can maximize the
following log-likelihood to estimate the value of ag

logLg(a|Rg) ∝ −
∑

(t,r)∈Ωg
c

∣∣Rg(t, r)− aPg(t, r)
∣∣

σRg
(r)

, (2)

which models the residual error with a distribution that
has an exponential decay as observed by [2].

Flux SNR Map
After the flux is approximated by maximizing (2) for each
pixel in the annulus, we construct a frame of fluxes. Then,
we compute the signal-to-noise ratio of the flux, S/N, by

S/N =
ag − â

sa

√
1 + 1

n

(3)

where â and sa are the mean and standard deviation value
of fluxes for all the pixels and n is the number of elements
at the same radial separation from the center.

Experiments
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Properties of the dataset and maps
• The ADI cube is VLT/SPHERE-IRDIS Eri in the

K1 (2.11 µm) band.
• The dataset has 256 frames covering 42◦ and
λ/D ≈ 4.9 pixel [3].

• The real planet is on 7.7λ/D separation.
• We inject 4 planets on 2λ/D, 5λ/D, 8λ/D, and
15λ/D separation.

• In detection maps, white circle represents the lo-
cation of the planet.

Real planet: In real dataset results, all detection maps
can detect the planet. However, the scales of the maps
show that MC algorithms perform better.

Synthetic Planets: Only one of the planet is detected
by PCA, while likelihood map after MC can detect all
the planets. Moreover, the furthest planet from the star
is best detected with SNR and Flux SNR maps after
MC.

Synthetic Planets
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